How to translate text using browser tools
1 March 2003 LIFE-HISTORY EVOLUTION AND THE MICROEVOLUTION OF INTERMEDIARY METABOLISM: ACTIVITIES OF LIPID-METABOLIZING ENZYMES IN LIFE-HISTORY MORPHS OF A WING-DIMORPHIC CRICKET
Anthony J. Zera, Zhangwu Zhao
Author Affiliations +
Abstract

Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100–400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based covariance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype × environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

Anthony J. Zera and Zhangwu Zhao "LIFE-HISTORY EVOLUTION AND THE MICROEVOLUTION OF INTERMEDIARY METABOLISM: ACTIVITIES OF LIPID-METABOLIZING ENZYMES IN LIFE-HISTORY MORPHS OF A WING-DIMORPHIC CRICKET," Evolution 57(3), 586-596, (1 March 2003). https://doi.org/10.1554/0014-3820(2003)057[0586:LEATMO]2.0.CO;2
Received: 25 June 2002; Accepted: 1 November 2002; Published: 1 March 2003
JOURNAL ARTICLE
11 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Adaptation
enzymes
intermediary metabolism
life history
trade-off
wing polymorphism
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top